

# SNOMED CT, FHIR, and more

François Macary Phast-Services: manager of international projects IHE International: co-chair of Pathology and Laboratory Medicine (PaLM) committee Interop'Santé: chair of HL7 France

# Where do I speak from?

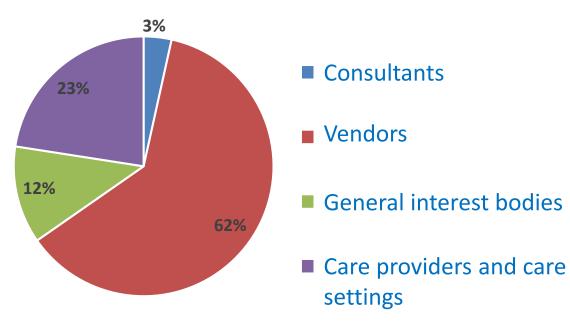
# Two tightly bound organizations





- Not-for-profit association
- Members: healthcare IT vendors
- Contributes to healthcare interoperability standards (HL7, IHE, SNOMED CT, LOINC ...)
- Current projects: HL7 IPS, Trillium II, Catalogs on FHIR, ...




- Company: production structure
- Customers: hospitals & clinics
- Builds and markets services deploying the standards in secondary care settings.
- Current services: terminology services, metathesauri, expertise

# Interop'Santé non-profit association

#### One goal: build standardized interoperability for health IT systems

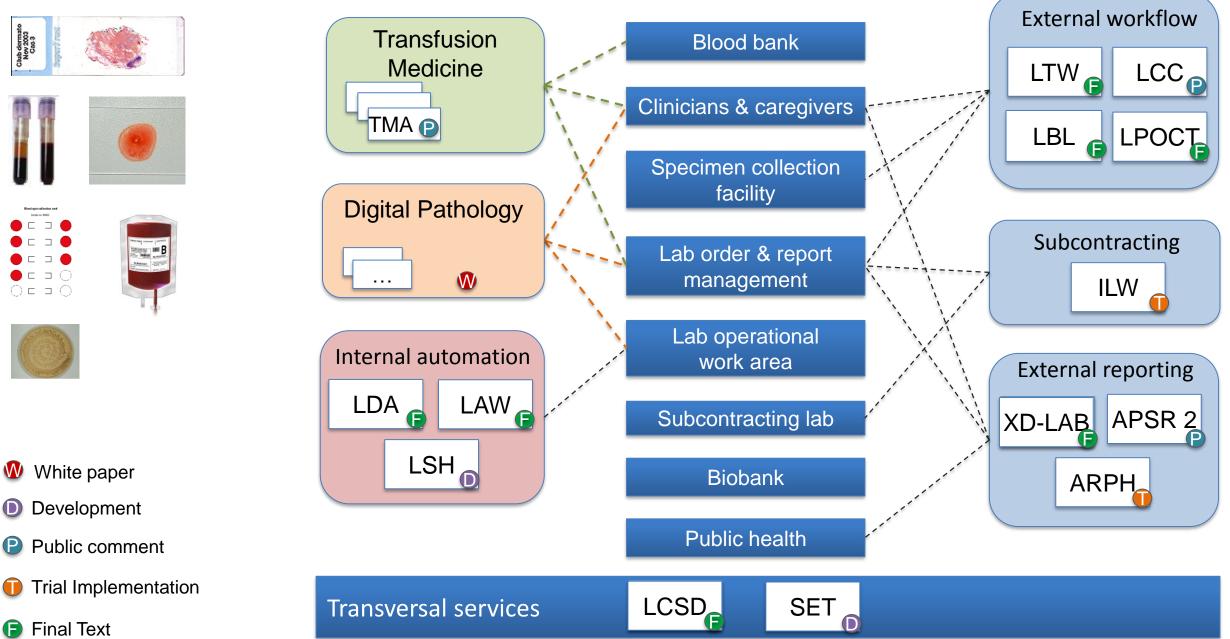


# 160 members



#### HE Integrating the Healthcore Enterprise International

The *Pathology and Laboratory Medicine* (*PaLM* ) domain covers interoperability needs of clinical and pathology laboratory workflows, transfusion medicine workflows and biobanking. This domain has 3 sponsors :




#### **IHE PaLM domain**

Club dermat Nov 2003 Cas 3

 $\bigcirc \square \square \bigcirc$ 

W





# Agenda:

- 1. Meaningful data in health IT systems: why and how?
- 2. Adoption of SNOMED CT needs to be stepwise
- 3. Leveraging external FHIR terminology services
- 4. Leveraging FHIR catalogs



# Agenda:

- 1. Meaningful data in health IT systems: why and how?
- 2. Adoption of SNOMED CT needs to be stepwise
- 3. Leveraging external FHIR terminology services
- 4. Leveraging FHIR catalogs

# An example



Laboratory procedure requested:

- Microbiology study on nasal fluid specimen •
- Reason for ordering: preoperative diagnosis
- Current medication of the patient: none •





Staphylococcus aureus identified.

vancomycin MIC  $\geq$  32 µg/ml -> Resistant



- Microbiology study of nasal fluid specimen
- Reason for ordering: preoperative diagnosis
- Current medication of the patient: none



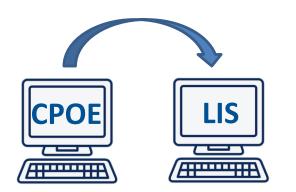
The ordering physician and the clinical lab director have a common understanding of this statement because:

- a) they speak the same language (syntax),
- b) they use a common vocabulary (vernacular + medicine)
- c) both of them acquired full knowledge of these concepts by academic education.

This common understanding enables them to cooperate (interoperate) efficiently on this procedure.





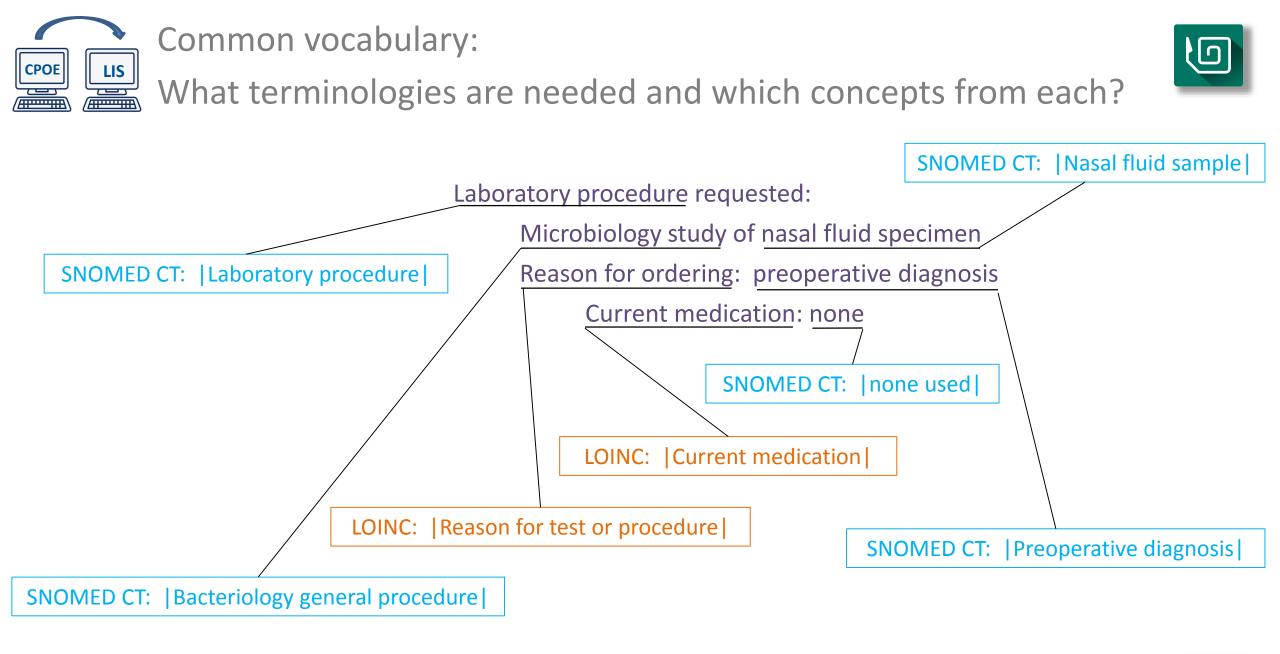

- Microbiology study of nasal fluid specimen
- Reason for ordering: preoperative diagnosis
- Current medication: none

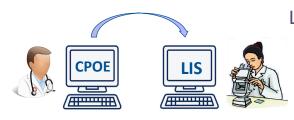


To cooperate even more efficiently, they need their IT systems to interoperate too, and to share this common understanding. This for more than one reason:

- 1. assist the user at data entry (creation of the procedure request),
- 2. integrate the request and acknowledge the event,
- 3. store each data element into the proper place,
- 4. display meaningfully the content of this request combined with relevant information available locally,
- 5. trigger actions to automate the process of the request,
- 6. later on, analyze the activity, or the population of patients based on the outcome of this activity,






- Microbiology study of nasal fluid specimen
- Reason for ordering: preoperative diagnosis
- Current medication: none

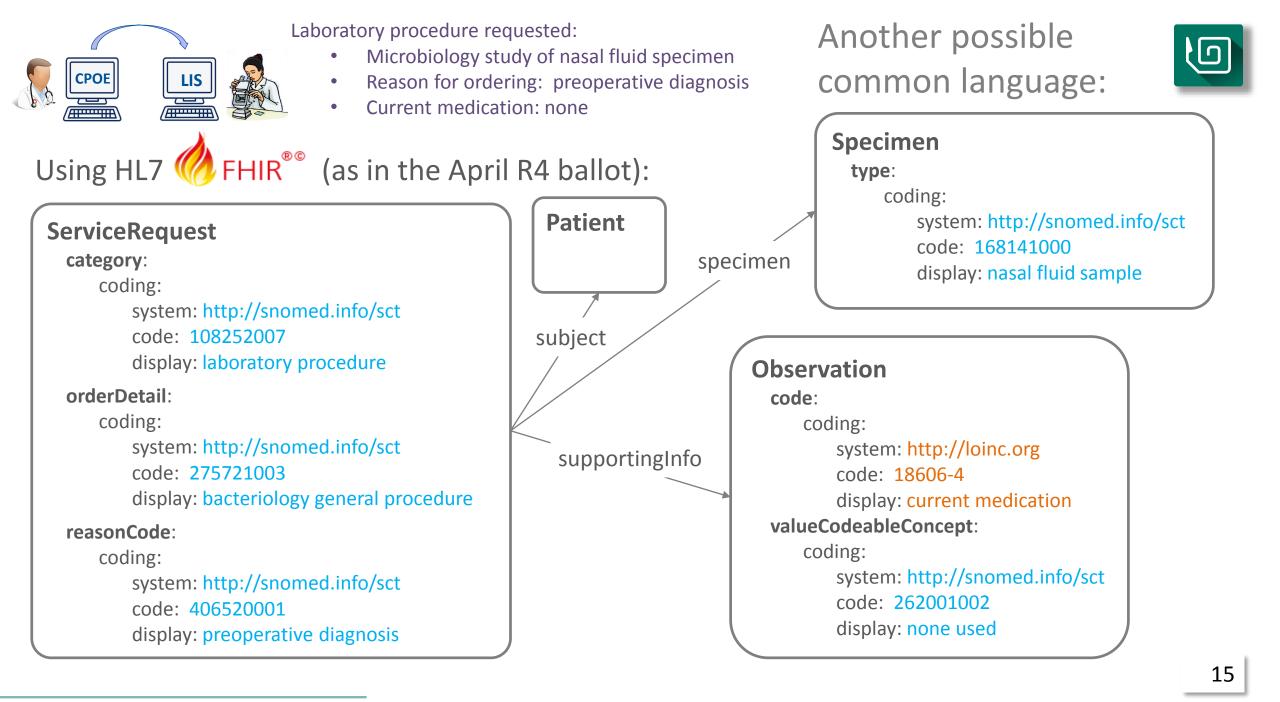
This common understanding between systems is only achieved if:

- a) The systems use a common language/syntax (information models + concept binding).
- b) The systems use a common vocabulary (reference terminologies).
- c) The systems have acquired some level of education (parameterization) about these concepts and models, to be able to operate on them (check consistency, trigger action, ...)
- d) The systems are able to retrieve knowledge about the concept received or to be keyed in (terminology services).





- Microbiology study of nasal fluid specimen
- Reason for ordering: preoperative diagnosis
- Current medication: none


## Common language:

#### Using HL7 v2 language constrained by IHE LTW profile:

Syntax/language SNOMED CT LOINC

```
MSH|^~\&| ... |OML^O33^OML_O33| ... |EN|...
PID| ... |EVERYMAN^ADAM^^JR^^^L|19800101|M|...
PV1|...
SPM|1|123^Card||168141000^Nasal fluid sample^SCT|...
ORC|...
TQ1|...
OBR|1|123^Card||275721003^Bacteriology general procedure^SCT|...
OBX|1|CE|67098-4^ Reason for test or procedure^LN||406520001^
Preoperative diagnosis^SCT|...
OBX|2|CE|18606-4^Current medication^LN||""|
```









• In the FHIR standard the concept of "reason for procedure" is built in the information structure:

ServiceRequest.reasonCode: 406520001 |Preoperative diagnosis (qualifier value)|

 In HL7 v2 a multipurpose OBX segment is used instead, therefore an additional concept is needed to specify which kind of observation is that:

OBX-3: 67098-4<sup>^</sup> Reason for test or procedure<sup>^</sup>LN OBX-5: 406520001<sup>^</sup> Preoperative diagnosis<sup>^</sup>SCT



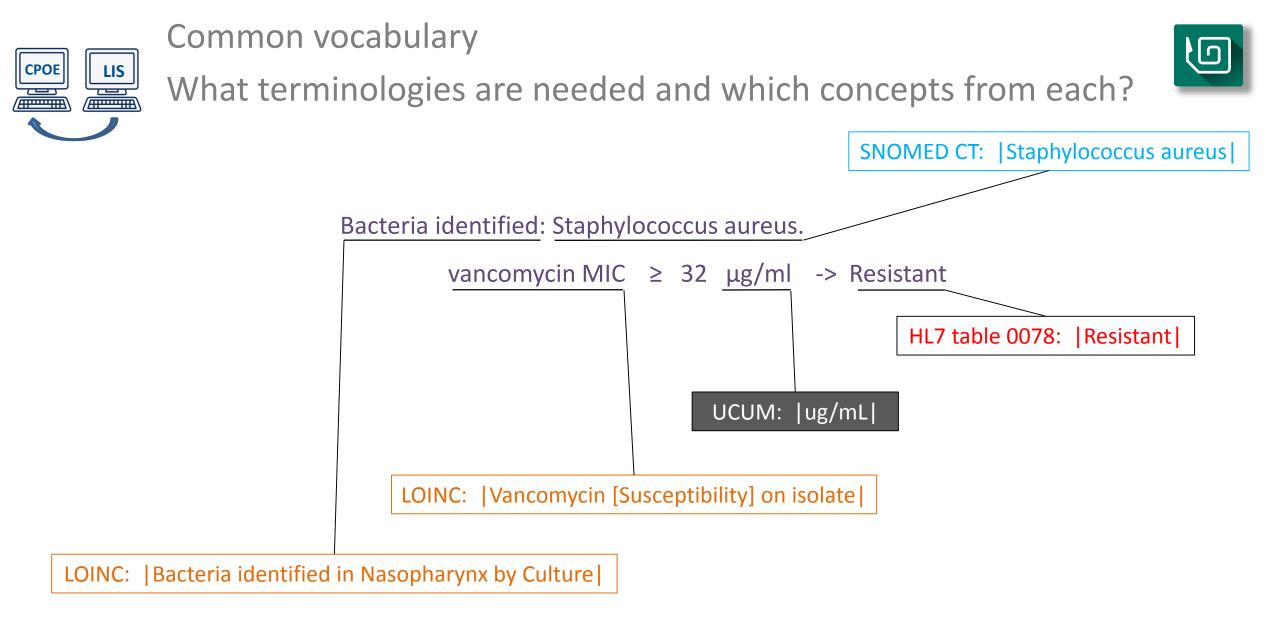


Coded concepts selected from various terminologies

Model of information



# Let's take a look at the results flow, now.

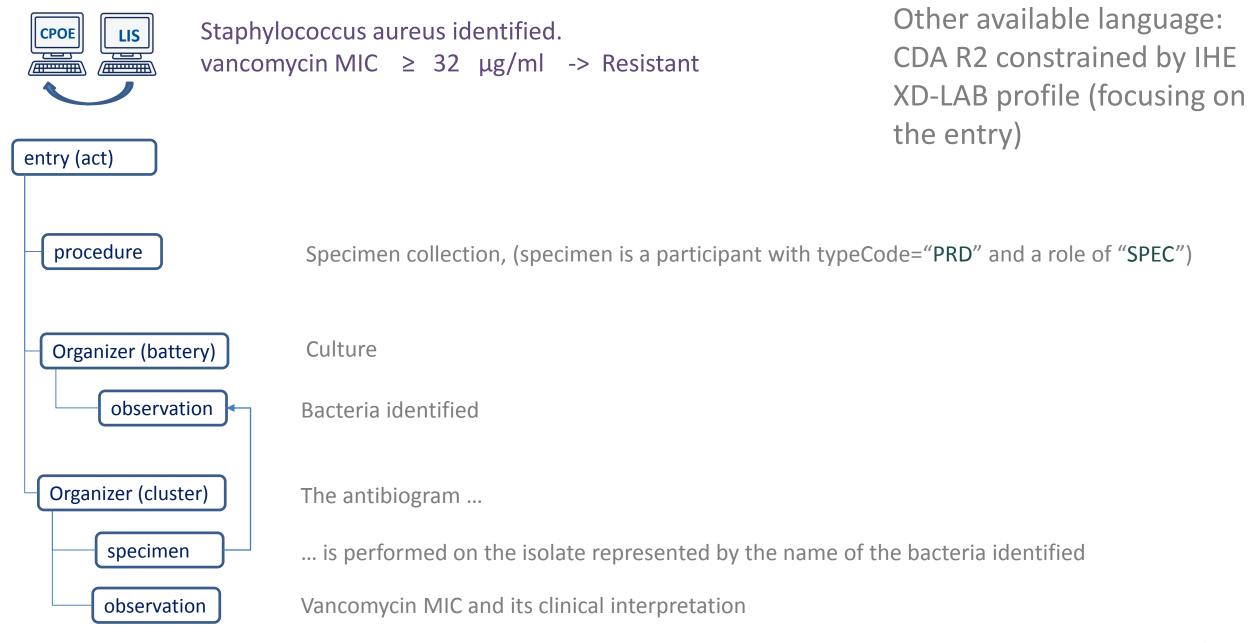







Staphylococcus aureus identified. vancomycin MIC  $\geq$  32 µg/ml -> Resistant








Staphylococcus aureus identified. vancomycin MIC  $\geq$  32 µg/ml -> Resistant



Using HL7 v2 language constrained by IHE LTW profile:





Staphylococcus aureus identified. vancomycin MIC  $\geq$  32 µg/ml -> Resistant Using CDA R2 constrained by IHE XD-LAB profile

entry (act)

The entry

procedure

 The specimen collected

 Staphylococcus aureus identified.

vancomycin MIC  $\geq$  32 µg/ml -> Resistant

Using CDA R2 constrained by IHE XD-LAB profile

| entry (act)         |   |
|---------------------|---|
| procedure           |   |
| Organizer (battery) |   |
| observation         | < |



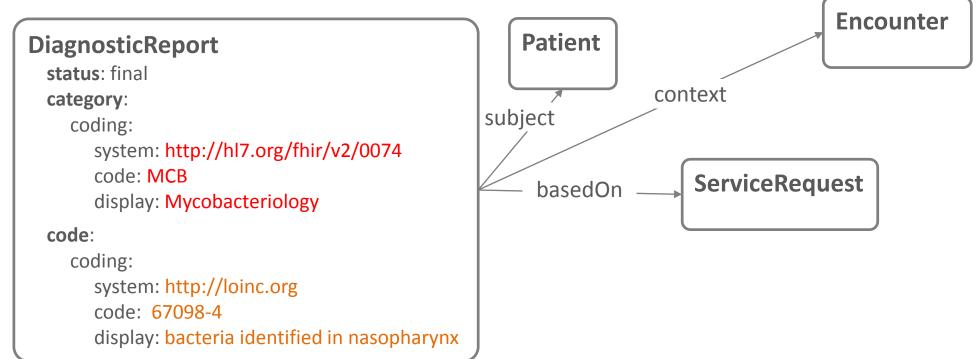
codeSystem="2.16.840.1.113883.6.96" codeSystemName="SNOMED CT"/>

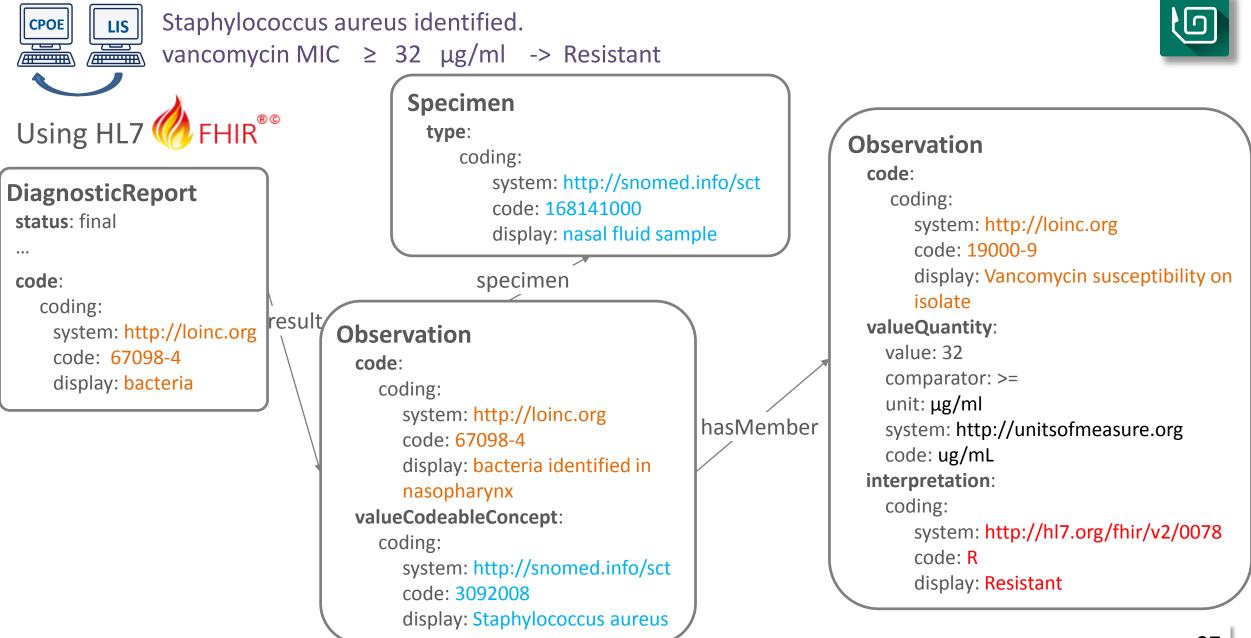
CPOE LIS 

Staphylococcus aureus identified.

vancomycin MIC  $\geq$  32 µg/ml -> Resistant

Using CDA R2 constrained by IHE XD-LAB profile


| entry (act)         |                                                                                                                                      |                             |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Organizer (cluster) |                                                                                                                                      |                             |
| observation         | <pre><observation classcode="OBS" moodcode="EVN">     <templateid root="1.3.6.1.4.1.19376.1.3.1.6"></templateid></observation></pre> | The vancomycin MIC          |
|                     | <pre><code code="19000-9" codes<="" codesystem="2.16.840.1.113883.6.1" td=""><td>ysteminame= LOINC</td></code></pre>                 | ysteminame= LOINC           |
|                     | <pre><effectivetime value="20150104155000+0100"></effectivetime> <value xsi:type="IVL_PQ"></value></pre>                             |                             |
|                     | <low inclusive="true" unit="ug/mL" value="32"></low><br>                                                                             |                             |
|                     | <pre><interpretationcode code="R" codesystem="&lt;/observation" displayname="Resistant"></interpretationcode></pre>                  | ="2.16.840.1.113883.5.83"/> |




Staphylococcus aureus identified. vancomycin MIC  $\geq$  32 µg/ml -> Resistant

One more language

# Using HL7 🅐 FHIR<sup>®®</sup> (as in the April R4 ballot):









- 1. Use a more specific concept for the observation "Bacteria identified"
  - SNOMED CT: | Vancomycin resistant Staphylococcus aureus (organism) |
- 2. Provide an additional observation:
  - Observation
    - code: LOINC: | Pathologist interpretation of Unspecified specimen tests |
    - value: SNOMED CT: | Multiple antimicrobial drug resistant bacteria (organism) |
- 3. In all cases, a conclusion is expected
  - Example with FHIR: DiagnosticReport.conclusion:

"Nasal carriage of multi-drug resistant Staphylococcus aureus"

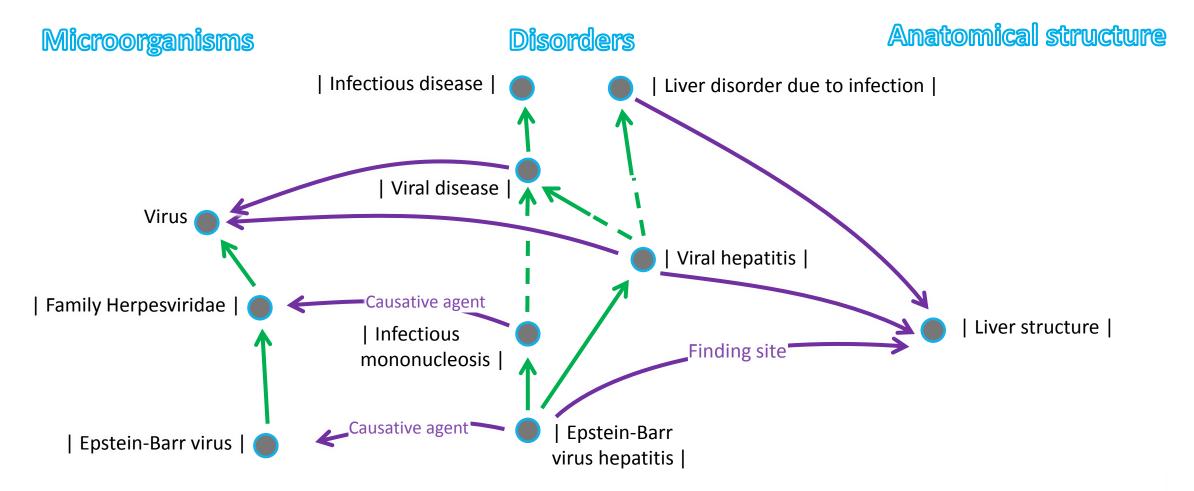
# One more reason for adopting common reference terminologies





- 1. assist the user at data entry (creation of the procedure request),
- 2. integrate the request and acknowledge the event,
- 3. store each data element into the proper place,
- 4. display meaningfully the content of this request combined with relevant information available locally,
- 5. trigger actions to automate the process of the request,
- 6. later on, analyze the activity, or the population of patients based on the outcome of this activity,
- 7. Enhance collaborative surveillance of healthcare acquired infections




# Agenda:

- 1. Meaningful data in health IT systems: why and how?
- 2. Adoption of SNOMED CT needs to be stepwise
- 3. Leveraging external FHIR terminology services
- 4. Leveraging FHIR catalogs

SNOMED CT provides not only concepts but also rich relationships

U

- − Polyhierarchical ( « is a » 1)
- Multiple attributes (



## This enables various

## Implementation Approaches

(Implementation course)

## SNOMED CT can be used as ...

|                               | What                     | Why                                           |
|-------------------------------|--------------------------|-----------------------------------------------|
| EHR-S                         | A code system            | To store clinical information                 |
|                               | An interface terminology | To capture and display clinical information   |
| retrieval index map EHR-S     | An indexing system       | To retrieve clinical information              |
|                               | A common terminology     | To communicate in a meaningful way            |
|                               |                          | To integrate heterogeneous data               |
| analytics EHR-S<br>Dictionary | A dictionary             | To query, analyze and report                  |
|                               |                          | To link health records to knowledge resources |
| Use of:                       | Extensible foundation    | To represent new types of clinical data       |
| - concept model               |                          |                                               |

- SNOMED CT expressions





# Need to start with the best combination of (high priority need, low hanging fruit, low cost)



My guess for European countries: start using SNOMED CT as a common terminology to improve interoperability



#### ➤ A small step ...

 IT Systems can rely on simple value sets bound to standardized interoperable information models (FHIR, CDA, HL7 v2, ...)

#### ... which fulfills important needs,

- National EHR/PHR systems
- Digitalized CPOE/result reporting in hospitals
- Cross-border healthcare (eHealth DSI, IPS, Trillium II, ...)

#### > ... and is a good priming.

- IT systems start acquiring SNOMED CT concepts through communication.
- Once sufficient data is SNOMED CT-encoded in the systems' databases, then other usages become possible (analytics, retrieval, link to knowledge resources ...)

#### Implementation Approaches

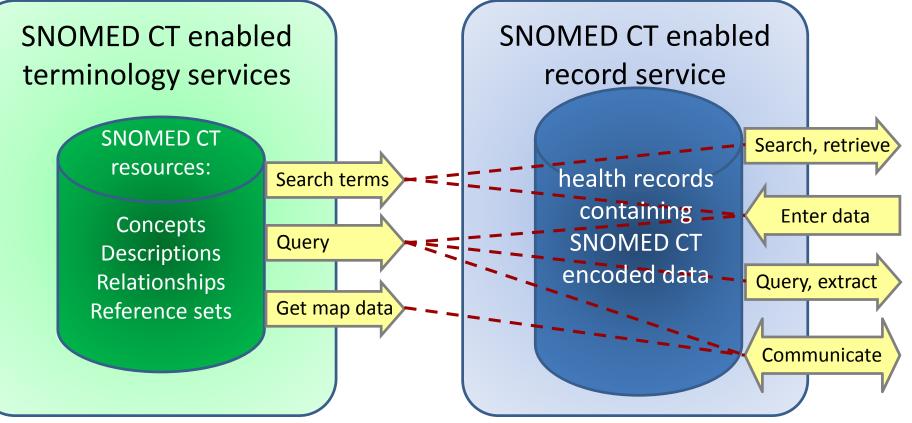
#### Start using SNOMED CT as:

|       | What                     | Why                                           |
|-------|--------------------------|-----------------------------------------------|
| EHR-S | A code system            | To store the clinical information exchanged   |
| XX:   | An interface terminology | To capture & display information exchanged    |
|       | An indexing system       | To retrieve clinical information              |
|       | A common terminology     | To communicate in a meaningful way            |
|       |                          | To integrate heterogeneous data               |
|       | A dictionary             | To query, analyze and report                  |
|       |                          | To link health records to knowledge resources |
|       | Extensible foundation    | To represent new types of clinical data       |



# Agenda:

- 1. Meaningful data in health IT systems: why and how?
- 2. Adoption of SNOMED CT needs to be stepwise
- 3. Leveraging external FHIR terminology services
- 4. Leveraging FHIR catalogs



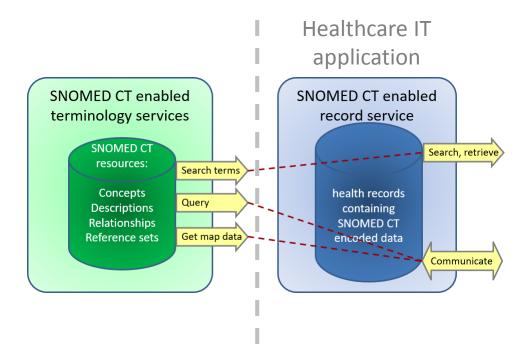

Search terms: find a concept based on matching search term

Query:

- Testing membership in reference sets
- Testing concepts for subsumption
- Traversing, navigating hierarchies
- Testing defining relationships against given criteria
- Testing expressions for equivalence and subsumption

**Get map data**: Retrieve maps of SNOMED CT to or from other code systems.




An easier first step for health IT solutions using SNOMED CT as a common terminology: Keep the terminology services external



To send meaningful data, the application must have been able to enter coded concepts, therefore **search terms**.

To receive and integrate meaningful data, the application must be able to:

- Check that a received concept belongs to a value set, therefore test membership in reference sets (reduced Query service).
- Map back and forth SNOMED CT concepts to local codes, therefore Get map data.



To use SNOMED CT for interoperability, the application needs limited terminology services



### FHIR terminology services fit this first need



The terminology resources and their relationships in FHIR Terminology module



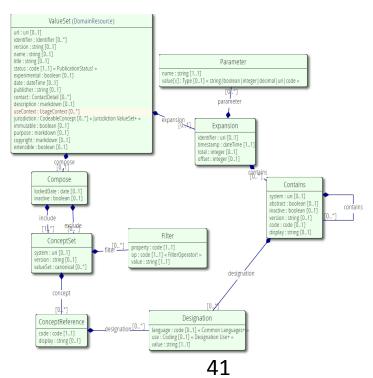
4.0 Terminology Module

# Terminology services needed by a system, which uses SNOMED CT as a common terminology



|             | Action                                                       | Minimal terminology services needed                                                                                                                                                                  |
|-------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ► <u>52</u> | Communicate in a meaningful way                              | <ul> <li>Test membership in reference sets<br/>(to check that a received code is part<br/>of the value set)</li> <li>Get map data (to convert back and<br/>forth with local code systems)</li> </ul> |
|             | Capture & display the clinical information that is exchanged | <ul> <li>Search terms</li> <li>Expand value set (to obtain a pick list and browse through it to capture the proper concept)</li> </ul>                                                               |
| EHR-S       | Store the clinical information exchanged                     | none                                                                                                                                                                                                 |






- Test membership in reference sets (verify that a code received belongs to the authorized value set)
  - Operation svalidate-code on the ValueSet resource, which is candidate normative for R4.

Main parameters:

- the code received
- The value set to look into

See <u>4.8.1.2 Operation \$validate-code on ValueSet</u>







 Expand a value set (to obtain a pick list and browse through it to capture the proper concept)
 > Operation \$expand on the ValueSet resource

Main parameters:

- the value set url
- a context
- a filter may be applied to restrict the subset of codes to be returned

See <u>4.8.1.1 Operation \$expand on ValueSet</u>





- Search term (for user interface: find a concept corresponding to a textual description, to be captured for a field in a form)
  - Operation sexpand on the ValueSet resource, using filters

Main parameters:

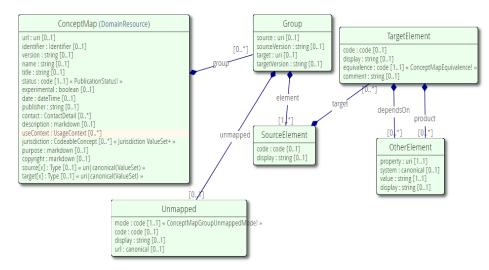
- the value set url
- a filter on the display term, restricting to the concepts that contain this term.

Example:

GET [base]/ValueSet/23/\$expand?filter=urinalysis

### See <u>4.8.1.1 Operation \$expand on ValueSet</u>






- Get map data (convert back and forth with local code systems)
  - Operation stranslate on the ConceptMap resource, candidate normative for R<sub>4</sub>.

The operation translates a code from one value set to another, based on the existing ValueSet and ConceptMap resources, and/or other additional knowledge available to the server.

• Works in both directions, and returns qualified matches for a concept.

### See 4.9.1.1 Operation \$translate on ConceptMap





## Conclusion



- A full integration of the terminology SNOMED CT into a healthcare application, based on the RF2 release files represents a significant investment.
- For a first step aiming at using SNOMED CT as a common terminology, leveraging external FHIR terminology services is likely to minimize the adaptation effort.



### Agenda:

- 1. Meaningful data in health IT systems: why and how?
- 2. Adoption of SNOMED CT needs to be stepwise
- 3. Leveraging external FHIR terminology services
- 4. Leveraging FHIR catalogs

## Beyond terminology services



- Standardized vocabularies (SNOMED CT, LOINC, EDQM, UCUM, ICD-10, ...) are also part of master data sets,
  - Ike a reference metathesaurus (e.g.; the thesaurus of all medications that can be prescribed in a country)
  - or a catalog reflecting an organization (e.g.; the compendium of in vitro diagnostic services that can be placed to a reference laboratory).
- Other services are needed to share these master data sets.



# Catalogs of orderable services/products with FHIR R4

OVERVIEW SUMMARY OF OUTCOME FROM CONNECTATHON 17 Some examples of catalogs of orderable services/products



- Drug formulary
- Catalog of medical devices
- □ Laboratory compendium (similar content as eDOS HL7 v2 IG)
- □ List of tests supported by an IVD device
- Directory of health care services

### Overview: Representing a catalog in FHIR R4



http://build.fhir.org/catalog.html = Profile(Composition)

class = kind of catalog

section

. . .

- entry Reference(EntryDefinition)
- entry Reference(EntryDefinition)
- entry Reference(EntryDefinition)

A catalog of orderable items is a collection of EntryDefinition resources.

Some of these EntryDefinition represent the orderable items themselves, while others represent resources supporting the orderable items.

### EntryDefinition

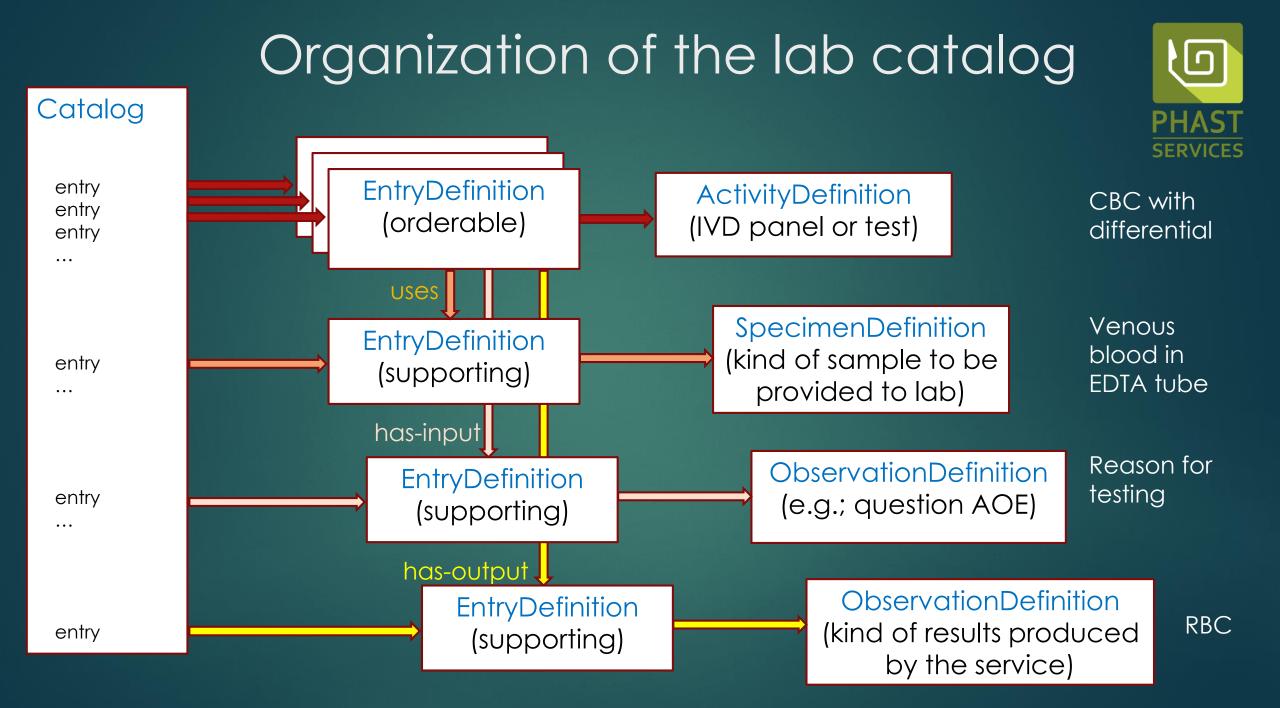
. . .

type(e.g. drug, service, device)purpose(orderable | supporting)referencedItemReference (Medication,<br/>Device, Organization,<br/>HealthcareService,<br/>ActivityDefinition,<br/>ObservationDefinition,<br/>SpecimenDefinition<br/>...)

Other metadata for this entry

Each orderable item (service/product) is represented by an EntryDefinition resource in the catalog, and is the referencedItem of that resource.

### RelatedEntry


[0..\*] relatedEntry item Reference (EntryDefinition)

> Every resource contributing to the description of an orderable item is the item of a RelatedEntry referenced by the entries it contributes to.



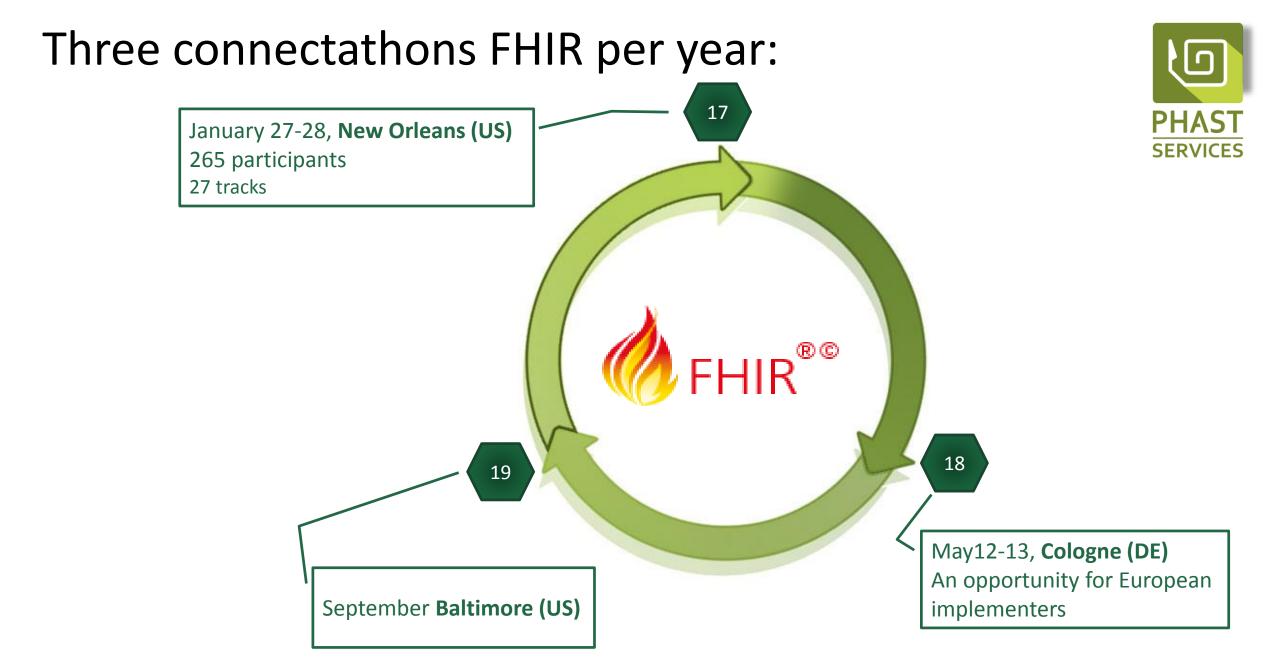
## Track "catalog" at connectathon 17

- Catalog: a clinical laboratory compendium
- I server (Phast) and 1 client (University of Utah)
- Scenario: Read access to the catalog
  - browse catalogs,
  - query the content of a catalog,
  - retrieve the detail of an orderable lab service (panel/test)
- Goal: verify the appropriateness of the new resources



## Outcome of connectathon 17

lab




Catalog Server

metathesaurus built by Phast-Services

- Catalog client developed by University of Utah
- □ Scenario: read access to the catalog; successful.
- Brings refinements to value sets, data types and search parameters for catalog resources.
- Catalog weekly calls (Wednesday 7pm, Europe central time).
   See catalog project wiki page:

http://wiki.hl7.org/index.php?title=Order\_Catalog\_Interface



# What's to be gained by attending a FHIR Connectathon?

- Join a community of FHIR users
  - > Bring Questions and share your challenges
  - Help others by sharing your knowledge
- Develop and test your system and use the standard
- Demonstrate what's possible
- Refine the FHIR Specification





### In summary:

- Health IT systems need international reference terminologies to support efficient coordination of care, locally, nationally, cross-border, cross-continent.
- SNOMED CT is the largest and inescapable one.
- Among the numerous purposes that SNOMED CT can serve, common terminology for meaningful information exchange seems an easy 1<sup>st</sup> step.
- Particularly for this 1<sup>st</sup> step, rather than a full integration by applications, it seems wise and affordable to leverage external FHIR terminology services.
- The new FHIR catalog services enable the sharing of large master data sets, making an extensive use of reference terminologies.



## Thank you

### francois.macary@phast.fr